

A Sustainable Gold and Green Energy Development Company

PL Gold Mine Development Green Hydrogen Development New Technology Development

TSXV: MCI | AGRDF: OTC Pink

Cautionary Notes

Cautionary Note Regarding Forward-looking Information

This presentation contains certain information that may constitute forward-looking information under applicable Canadian and U.S. securities legislation, including but not limited to information about current expectations on the timing, extent and success of exploration, development and metallurgical sampling activities, the timing and success of mining operations, the optimization of mine plans, milling activity at the PL Mill, the timing and completion of updated mineral resource and reserve estimates in respect of the PL and Nokomis deposits, the Company's intention and ability to monetize mineralized material, project development and related permitting, the financial condition of Minnova and the ability of Minnova to finance exploration and development funding requirements and the ability of Minnova to meet forecast production and cost targets. This forward-looking information entails various risks and uncertainties that are based on current expectations, and actual results may differ materially from those contained in such information. These uncertainties and risks include, but are not limited to, the strength of the global economy; the price of gold; operational, funding and liquidity risks; the degree to which mineral resource estimates are reflective of actual mineral resources; the degree to which factors which would make a mineral deposit commercially viable are present; the risks and hazards associated with underground operations; and the ability of Minnova to fund its substantial capital requirements and operations. Risks and uncertainties about the Company's business are more fully discussed in the Company's disclosure materials filed with the securities regulatory authorities in Canada which are available at www.sedar.com. Readers are urged to read these materials. Minnova assumes no obligation to update any forward-looking information or to update the reasons why actual results could differ from such information unless required by law.

Cautionary Note Concerning Resource Estimate:

Information concerning mineral resource estimates and the interpretation of exploration programs and drill results also may be considered forward-looking statements, as such information constitutes a prediction of what mineralization might be found to be present and economically mineable if and when a project is actually developed.

Qualified Person

The scientific and technical data contained in this presentation was reviewed and prepared under the supervision of Mr. Chris Buchanan, M.Sc., P. Geo., a consultant of the Company and a "Qualified Person" under National Instrument 43-101. Mr. Buchanan is a Qualified Person under National Instrument 43-101 Standards of Disclosure for Mineral Projects. Mr. Buchanan has verified the data related to the exploration information disclosed in this news release through his direct participation in the work. Certain scientific and technical information with respect to the PL Gold Project contained in this Presentation has been taken from the technical report entitled "NI 43-101 Technical Report" with an effective date of October 31 2017 (the "Technical Report") authored by Malcolm Buck P.Eng., Brian LeBlanc, P.Eng., Curtis Clarke, P.E., Al Hayden, P.Eng., Leon McGarry, P. Geo., Ian Trinder, P.Geo., Byron O'Connor. A copy of the Technical Report is available on Minnova's SEDAR profile at www.sedar.com. Detailed descriptions, results and analysis of Minnova's data verification, drilling, QA/QC programs, and mineral resource estimation methodology can be found in the Technical Report.

Cautionary Note to US Investors Concerning Resource Estimates

Information in this Presentation is intended to comply with the requirements of the TSX-Venture and applicable Canadian securities legislation, which differ in certain respects with the rules and regulations promulgated under the United States Securities Exchange Act of 1934, as amended ("Exchange Act"), as promulgated by the Securities and Exchange Commission. The Reserve and Resource estimates in this Presentation were prepared in accordance with National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101) adopted by the Canadian Securities Administrators. The requirements of NI 43-101 differ significantly from the requirements of the United States Securities and Exchange Commission.

Unless otherwise noted, all dollars in this presentation are in C\$ dollars.

Two Value Propositions:

Gold Mine Development and Energy Transition Strategy

Advanced Development Stage Project Positive Feasibility Study (2018) – high IRR using US\$1,250/oz Au

Low Capex – C\$35 million

Near-Term Production – 18 months from Funding

Permitted for Restart of Underground Mining

Reserves/Resources Open to Expansion

Leverage to Higher (Current) Gold Price

Property-Wide/Regional Exploration Upside

Investment in New Gasification Technology
Diversifying Risk Across Electrolysis and
Biomass Gasification
Early Mover in Green Hydrogen Production
Global Development Opportunities
New Technology Development
Phased Development Strategy
Commercial Discussions in Progress

Community Support

Exploring Strategic Alternatives to Unlock Shareholder Value

CANADA - PL Gold Mine Restart

- ✓ Substantially derisked the PL Mine development plan
- Demonstrated resource expansion and exploration potential
- Past producer benefits from substantial infrastructure
- X Undervalued relative to Peers on virtually all valuation metrics

The value can be unlocked by:

- Outright sale, development Joint Venture,
 M+A / merger
- Advance mine restart with test mining, bulk sample, updated res/res and feasibility study
- Exploration and resource expansion drilling
- Leverage to higher (current) gold price

Clean Energy Transition Strategy

Minnova Renewable Energy Inc.

Focus on biomass gasification technologies and clean technology development
Advancing site selection for biomass gasification projects on 3 continents
Advancing biomass gasification pilot plant development in Manitoba

Flin Flon Clean Energy Hub (FFCEH)

The proposed FFCEH biorefinery is a project that will demonstrate Manitoba's leadership in the clean energy transition

Large scale (>100MW) commercial electrolysis technology to produce green hydrogen

Produce biofuels and efuels to support industry fuel switching to reduce CO2 emissions

PL Gold Mine Restart Positive Feasibility Study – Gold Price Leverage

Feasibility Study Highlights

- Based on new RSV/RSC's
- Phase-1 mine life of 5 years
 - UG Reserves 259,000 oz @7.0g/t
 - Avg annual production 46,500 oz
 - Global Resource 612,426 oz
 - Resource and expansion potential
- **Average LOM OPEX C\$162/tonne**
 - US\$750 /oz
- Total estimated CAPEX of C\$35M
- Fast Payback ~1.5 years

Feasibility Sensitivity to Higher Gold Price

Gold Price	US\$ 1250 ¹	US\$ 2000 ²
After-Tax NPV _{0%} (C\$ M)	\$46.8	\$244.8
After-Tax NPV _{5%} (C\$ M)	\$36.7	\$225.6
After-Tax IRR	53%	210%
Payback (yrs)	1.5	0.4
After-Tax FCF (C\$M)	~\$95	~\$273

Note: 1) Base Case study uses gold price of US\$1250/oz and US\$:C\$ exchange rate 0.77, UG = Underground Reserves. 2) Impact of an increase in gold price, to US\$2,000 per ounce (approximately 60% higher than the 2018 FS), on the project's after-tax NPV5%. All other input variable held constant.

Near Term Production with Significant Gold Price Leverage

PL Mine Restart Low Risk Jurisdiction – Manitoba, Canada

Significant Mine Infrastructure In Place

Regional Infrastructure

- All weather access
- Railroad
- Regional airport
- 22 km Power line
- Water
- All mining and processing support services

1000 tpd mill

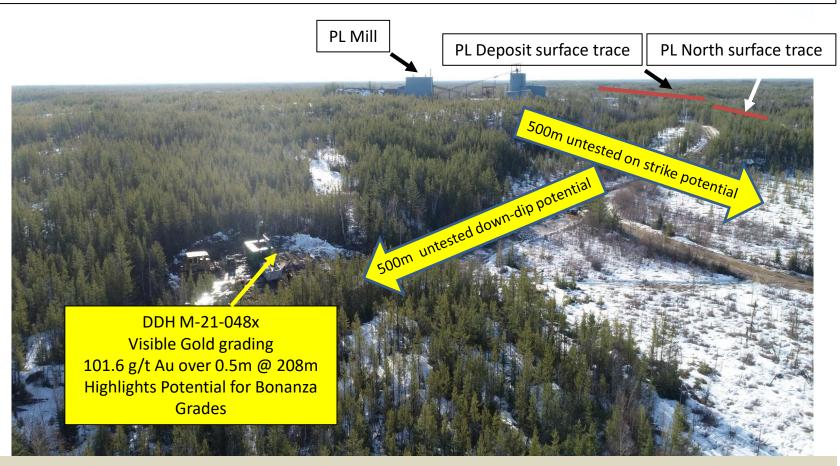
- Crusher
- Fine Ore bin (3 Compartment)
- Rod/Ball Mill
- Floatation tanks
- Leach Tanks CIL
- Gold furnace
- Laboratory
- Office

Underground Development

- Access portal/decline
- 7000 m underground development

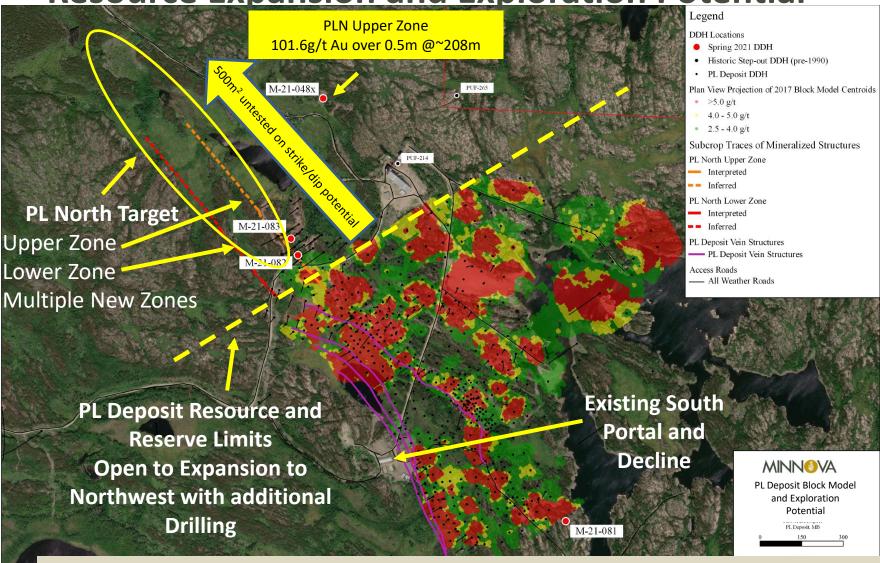
PL Mine Restart Feasibility Study Sensitivity to Higher Gold Price

Gold Price (USD/oz)	\$1,125	\$1,250	\$1,500	\$1,750	\$2,000	\$2,250	\$2,500
% change	-10%	0%	20%	40%	80%	90%	100%
Pre-Tax NPV _{5%} (C\$M)	\$43	\$56	\$119	\$173	\$235	\$298	\$361
After-Tax NPV _{5%} (C\$M)	\$6	\$37	\$96	\$145	\$204	\$264	\$323
Pre-Tax IRR	53%	65%	117%	162%	210%	257%	304%
After-Tax IRR	16%	53%	109%	154%	203%	251%	299%



¹⁾ See March 2018 Feasibility Study report for further information. Feasibility Study base case gold price — US\$1,250/oz and FX - 0.77 CAD:USD

Restarting the PL Gold Mine Mear Term – High Grade Production

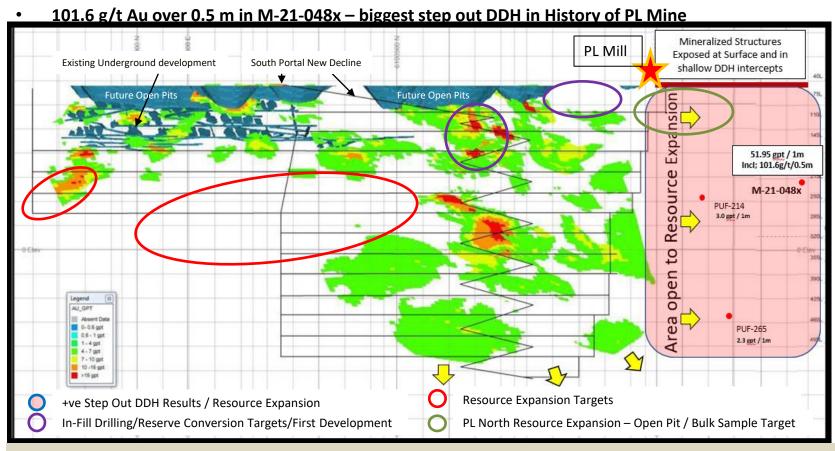

PL North Step-Out Drill Hole M-21-048x in the Shadow of the PL Mill

VG grading 101.6g/t Au in PL North Step-Out DDH Confirms Exploration Upside

Resource Expansion and Exploration Potential

PL Deposit remains open on strike and down dip

PL North Taking Shape in the Shadow of the Mill



PL North – Shallow Resource Development Offers New Development Options

Resource Expansion AND Reserve Conversion

- Positive Summer 2020 and Spring 2021 drilling results.
- Step out drilling confirmed extension of mineralized structures, near surface high grade intercepts and new FW Tonalite mineralized structures supporting future resource expansion potential

PL Deposit remains open on strike and down dip

PL and Nokomis Gold Deposits

Demonstrated Expansion Potential

PL and Nokomis Deposits: Independent* NI 43-101 Mineral Resource Estimates

- Proven 105,000 oz Au and Probable 154,000 oz Au
- Measured & Indicated Resource of 293,326 oz Au
- Inferred Resource of 319,100 oz Au

Deposit	Cut-off Grade (Au g/t)	Resource Category	Tonnes (t)	Au Grade (g/t)	Au Ounces		
Open Pit Mineral Resources							
PL Deposit In Pit	0.6g/t	Measured	75,993	4.95	12,124		
	0.6g/t	Indicated	185,433	5.64	33,702		
Nokomis Deposit	0.6g/t	Indicated	371,000	3.41	40,700		
Total PL and Nokomis In Pit	0.6g/t	Measured & Indicated	632,426	4.25	86,526		
Nokomis Deposit	0.6g/t	Inferred	247,000	2.41	19,100		
Total PL and Nokomis In Pit	0.6g/t	Inferred	247,000	2.41	19,100		
	Shallow Und	erground Mineral Resources		_	-		
PL Deposit Underground	2.5g/t	Measured	444,000	6.89	101,000		
	2.5g/t	Indicated	1,119,000	5.24	189,000		
Total PL Underground	2.5g/t	Measured & Indicated	1,573,000	5.73	206,800		
PL Deposit Underground	2.5g/t	Inferred	1,920,000	4.91	300,000		
Total In Pit and Shallow Underground Mineral Resources							
Total In Pit and Underground	0.6/2.5g/t	Measured & Indicated	2,205,426	5.30	293,326		
Total In Pit and Underground	0.6/2.5g/t	Inferred	2,167,000	4.63	319,100		

Both PL and Nokomis deposits are open down dip + along strike

[•] Mr. Leon McGarry, B.Sc., P.Geo., of CSA Global Limited. of Toronto, Ontario. Mr. McGarry is an Independent Qualified Persons as defined under NI 43-101 regulations.

[•] See April 17, 2014 press release for notes on the Nokomis Deposit resource estimate

[•] See November 1, 2017 press release for notes on the PL Deposit resource estimate

PL Mine Restart – 2024/25 Work Program

- Planned 2024/25 PL Mine technical programs designed to:
 - Increase project NPV
 - Test mining / bulk sample
 - Reduce risk
 - Continue to demonstrate
 Exploration Upside
- New technical team hiring program
- Update Feasibility Study
- Amend underground mining license for surface bulk sample and new portal/ramp underground access

Many Optimization Opportunities to Drive Shareholder Value

Upcoming Catalysts to Drive Share Price!

PL Mine Development - Gold

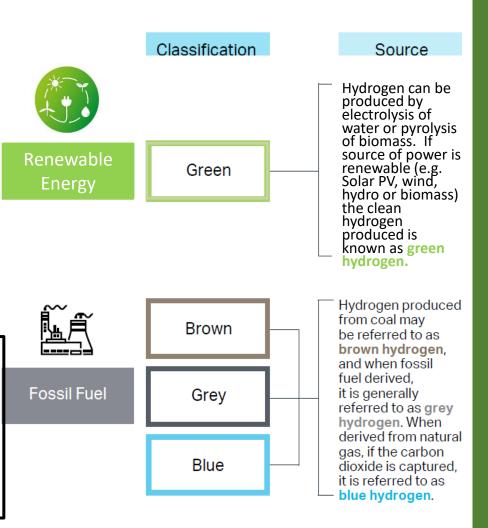
- Resource Expansion and Reserve Conversion Infill Drilling in planning stage
- Underground test mining program in planning stage
- Updated metallurgical program targeting increase gravity recovery in planning stage
- Discussions with lenders on project financing ongoing
- Amend mining license for surface bulk sample in planning stage

FFCEH / Minnova Renewable Energy - Green Hydrogen and hydrogen carriers

- Site selection, feedstock evaluation, mobile demonstration plant, market studies ongoing
- Funding Grants, Green Loans analysis, strategic invest and offtake discussions ongoing

Resource expansion and reserve conversion		Update Resource and Reserve	>	Update Mine Plan and Feasibility Study
Underground Test Mining Program	\rangle	Surface and Underground Bulk Samples	>	New Metallurgical Study with Focus on Gravity Recoveries
Strategic Pivot to include Green hydrogen and Cleantech	$\overline{\ \ }$	Finance / Restructure / M&A Discussions	\rangle	Multiple paths to increasing Shareholder value

Strategic Plans for PL and Green H2 Programs + News Flow to Attract Investors



Green Hydrogen: Emerging Market Opportunity

- Green Hydrogen production is based on proven technology technologies.
- Current hydrogen technology is already able to provide advantages over other energy options.
- GREEN hydrogen, produced at scale, has the potential to enable deep decarbonization across the energy and industrial sectors.
- Still early days but hydrogen adoption is forecast to accelerate to meet Net Zero 2050 goals.

Global Energy Transition Opportunity

Green Hydrogen market is expected to grow significantly in the years to come and we are positioning Minnova to produce new green hydrogen, hydrogen carriers, efuels biofuels and develop new clean energy technologies.

Minnova and Minnova Renewable Energy A Bold Vision to be a Leader in Global Energy Transition

Minnova is advancing green hydrogen production via commercial electrolysis technology and by developing and acquiring new technologies that mitigate climate change by converting waste biomass to energy.

Invest and Develop

MOU to develop large scale green hydrogen via electrolysis in Flin Flon, MB

MOU to with Arctic Gateway Group to promote the transportation, distribution, and export of green hydrogen and zero carbon fuels

Positive FFCEH Internal Scoping Study to produce green hydrogen

ESG Focus

Sustainable

Renewable power to X and biomass waste to green hydrogen is socially accepted

Meets Environmental, Social and Governance (ESG) goals

Green Energy Opportunity

Government, industry and society at large are seeking increased sustainable renewable energy supply. Green H2 and other biofuels from renewable energy and sustainable biomass gasification are an obvious solution

Energy Transition Strategy

Dual Track Green H2 and Cleantech Strategy

Flin Flon Clean Energy Hub (FFCEH)
Green Hydrogen from Conventional Electrolysis
(Manitoba)

98% of MB Hydro's electricity is sourced from renewable hydropower, lowest CO2 emissions in Canada

MB Hydro's industrial electricity rates are amongst the lowest in the world at C\$0.037/kWh²

Low cost renewable energy is key to green hydrogen production via electrolysis

Next Steps

- ✓ Finalize site section for scalable electrolysis green H2 process
- ✓ Engage community to support development initiative
- ✓ Initiate techno-economic and FEED studies

Minnova Renewable Energy Inc. Green Hydrogen from Biomass (Manitoba, Canada and ROW)

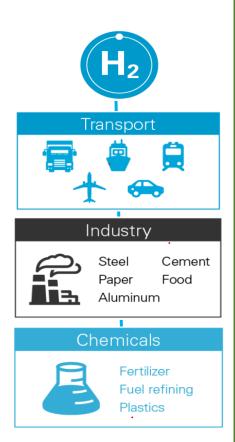
Manitoba as abundant sustainable waste wood from forestry operations and agricultural residues as a renewable biomass feedstock

Acquire or license advanced biomass gasification technologies

Significant opportunity to develop large scale green hydrogen and green ammonia production from biomass

Next Steps

- ✓ Finalize site section for scalable gasification green H2 process
- \checkmark Engage community to support development initiative
- ✓ Negotiate biomass supply
- Initiate market studies considering domestic and export opportunities
 - · Solicit offtake agreements

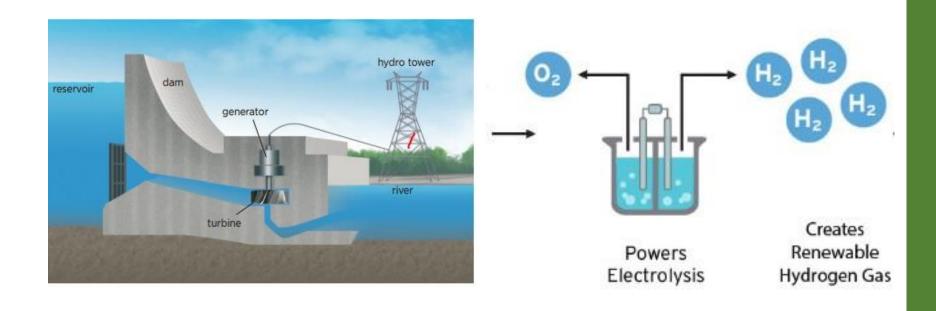

Our energy transition strategy can deliver economic and social benefits including; energy security and independence, near term local economic growth, job creation, revitalize remote communities, support forestry and agricultural sectors and create a low carbon circular economy.

Tackling Climate Change with Green Hydrogen Production Great Challenge = Great Opportunity!

- Green hydrogen is produced by using renewable energy sources and does not emit any carbon dioxide or other greenhouse gases during production. This makes it a vital tool in reducing carbon emissions and slowing down the rate of global warming.
- Green hydrogen is a versatile energy carrier and can be used as a fuel for transportation, as a storage medium for renewable energy, and as a feedstock for various industrial processes. This versatility makes it an important solution for achieving decarbonization across various sectors of the economy.
- Green hydrogen offers energy security as it can be produced locally and provide a secure source of energy for countries that may be vulnerable to energy supply disruptions.
- Green hydrogen is poised to play a key role in the hard to decarbonize sectors like transport, industrial processes and chemicals while opening up new business and export opportunities to satisfy global demand for clean energy.
- Green hydrogen development supports job creation and economic growth particularly in areas with abundant renewable energy resources. This is because green hydrogen production requires skilled workers and new infrastructure, which can stimulate local economies.

Flin Flon Clean Energy Hub A large Scale Green H2 Opportunity

- Manitoba green hydrogen production initiative was announced in late March 2023.
- MOU with the City of Flin Flon
- Flin Flon has excellent industrial infrastructure, a highly skilled workforce, access to MB Hydro grid power
- MOU with Arctic Gateway Group
- Access to the Atlantic/Arctic Oceans via the Port of Churchill, Manitoba
- Electricity load study with MB Hydro for low-cost grid hydropower (~100MW)
- Positive internal Scoping Study for scalable low-cost production cost green H2
- Next Steps -> Techno-economic assessment/ feasibility study and final site selection



Electrolysis of Water using Renewable Hydro Power

Other

FFCEH - Scalable Green Hydrogen Production & Conversion

- FFCEH Project is not a research project.
- Phase 1 Scoping Study is completed and support advancing to Techno-Economic Assessment / Feasibility Study

Renewable Diesel

SΔF

Methanol (CH3OH or MeOH)

Multiple zero carbon production options

(14115)	Wictharior	(6113011)	or ivicori,	Iteliev	vable bles	Ci JAi	O.	1101
Scenario One - Staged Scale up to 100MW (2x capacity every 2 years)								
	Productio	n in Metric	Tonnes pe	r Month (M	T/mo)			
	2027E	2028E	2029E	2030E	2031E	2032E	2033E	2034E
MW	20	20	40	40	80	80	100	100
n MT/mo	240	240	480	480	960	960	1,200	1,200
MT/mo	1,680	1,680	3,360	3,360	6,720	6,720	8,400	8,400
MT/mo	1,360	1,360	2,720	2,720	5,439	5,439	6,799	6,799
	Scena MW MT/mo MT/mo	Scenario One - Stage Productio 2027E MW 20 MT/mo 240 MT/mo 1,680	Scenario One - Staged Scale up Production in Metric 2027E 2028E MW 20 20 a MT/mo 240 240 MT/mo 1,680 1,680	Scenario One - Staged Scale up to 100MW Production in Metric Tonnes per 2027E 2027E 2028E 2029E MW 20 20 40 MT/mo 240 240 480 MT/mo 1,680 1,680 3,360	Scenario One - Staged Scale up to 100MW (2x capacity Production in Metric Tonnes per Month (MT) 2027E 2028E 2029E 2030E MW 20 20 40 40 MT/mo 240 240 480 480 MT/mo 1,680 1,680 3,360 3,360	Scenario One - Staged Scale up to 100MW (2x capacity every 2 years) Production in Metric Tonnes per Month (MT/mo) 2027E 2028E 2029E 2030E 2031E MW 20 20 40 40 80 MT/mo 240 240 480 480 960 MT/mo 1,680 1,680 3,360 3,360 6,720	Scenario One - Staged Scale up to 100MW (2x capacity every 2 years) Production in Metric Tonnes per Month (MT/mo) 2027E 2028E 2029E 2030E 2031E 2032E MW 20 20 40 40 80 80 MT/mo 240 240 480 480 960 960 MT/mo 1,680 1,680 3,360 3,360 6,720 6,720	Scenario One - Staged Scale up to 100MW (2x capacity every 2 years) Production in Metric Tonnes per Month (MT/mo) 2027E 2028E 2029E 2030E 2031E 2032E 2033E MW 20 20 40 40 80 80 100 MT/mo 240 240 480 480 960 960 1,200 MT/mo 1,680 1,680 3,360 3,360 6,720 6,720 8,400

MW - Megawatt

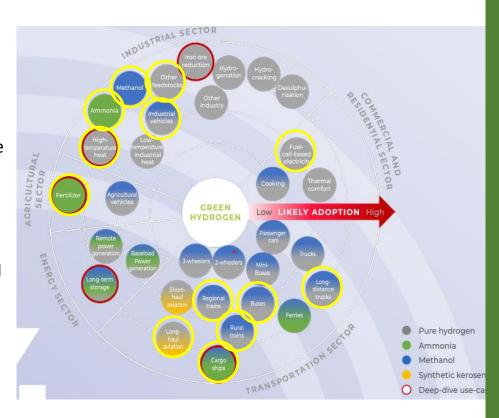
MT/mo = metric tonne per month

Ammonia (NH3)

Scalable Green Hydrogen Production

- FFCEH Project is not a research project.
- Positive Phase 1 Scoping Study is completed
- Low cost green H2
 production supports
 advancing to Techno Economic Assessment /
 Feasibility Study
- TEA/FS will detail all development input AND efuels/biofuels market demand

Parameter	Value
Plant Lifetime	30 years (zero value end of life)
Construction Time	2 years (75% initial capital in year 1,25% in year 2)
Depreciation Method	Straight Line
Depreciation Rate	5%
Phase 1 Electrolyser PEM Technology	20MW
Phase 1 Plant Capacity	8,000 kg H2 / day or 240 metric tonnes / month
Utilization Factor	minimum 90%
Electrical Usage	55.5 kWh/kg H2 produced
Electrical Efficiency	66% (LVH of H2 input energy)
Water Use	14.5 l/kg H2
Uninstalled Capex	US\$ ● kW (Industry)
Installation Cost	US\$● kW (Industry)
Balance of Plant (BoP)	US\$● kW (Industry)
Grid Power Price	C <mark>\$0.04 /kWh</mark>
Escalation / Inflation Factor	2%
Operating Costs	US\$® kW (Industry)
Process Co-products (e.g. oxygen, steam etc.)	\$nil revenue
Incentives	\$nil
Replacement Cost of Major Components	US\$● kW (Industry)
Green Hydrogen Production Cost	~US\$2.00 / Kg

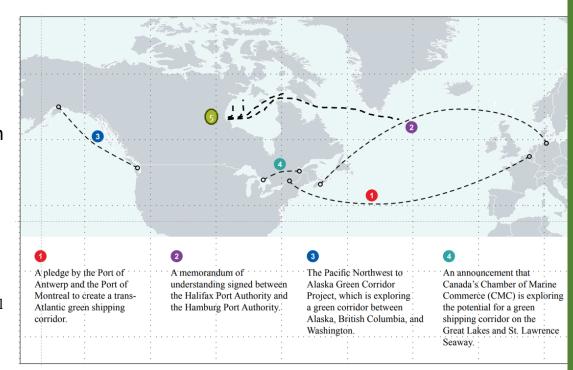


Green Hydrogen Use-cases

Green hydrogen produced at the FFCEH is expected to play a significant role for use-cases such as:

- Fertilizer production makes up ~1/3rd of hydrogen demand today. Demand is set to grow. Hence it is vital that this sector transitions to green hydrogen to reduce emissions.
- Shipping is a clear use-case for ammonia. The maritime industry needs to transition in the near term to meet long-term targets due to the lifetime of the engines.
- High-temperature industrial process/heat currently using natural gas/propane associated with significant CO2 emissions. Very few suitable and efficient alternatives, except hydrogen.

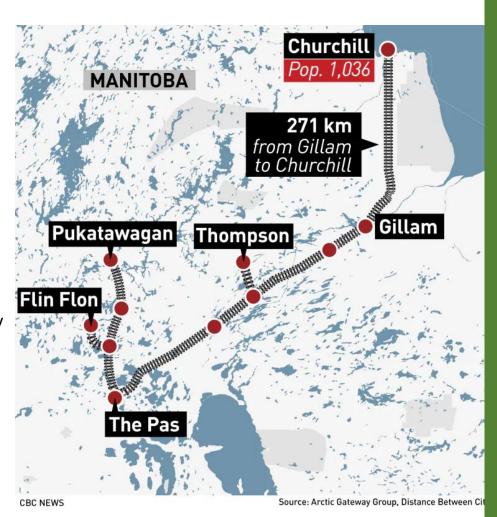
Geographically, hydrogen will be produced where electricity is cheap and water supply is readily available.



Manitoba is a Maritime Province

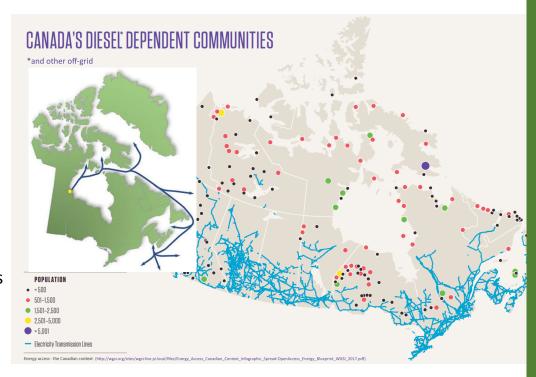
- Canada announces Green
 Shipping Corridor Program ¹
- Manitoba and Port of Churchill, Canada's only arctic seaport not included in original GSCP
- Updated GSCP for the FFCEH

The FFCEH can provide green methanol, ammonia or renewable diesel for arctic shipping and ultimately green energy for off grid arctic communities



MOU with Arctic Gateway Group

- Indigenous and northern communities-owned transportation and logistics company that owns the Hudson Bay Railway and Port of Churchill infrastructure assets.
- Federal government have committed over \$250 million for refurbishment or rail and port infrastructure.
- Industries seeking zero carbon energy options, like green hydrogen produced from the FFCEH, are also placing increasing importance the logistics and transport solutions
- AGG's rail and port infrastructure will form a key logistics solution for distribution of FFCEH products within Canada and potentially for export via the Port of Churchill, Canada's only Arctic seaport.



Strategic Opportunity to Decarbonize Arctic Marine Shipping and Northern Communities

- The FFCEH represents a supply of zero carbon fuels to the marine industry and can help attract shipping companies to the Port of Churchill
- FFCEH's can utilize the port to supply zero carbon energy to enable the decarbonization of Canada's nearly 200 off grid arctic communities
- FFCEH could replace the current annual sealift from eastern Canadian ports of nearly 150 million litres of fossil diesel fuels with renewable diesel and other zero carbon fuels
- The Port of Churchill as a logistics solution to provide affordable low-cost bulk commodities and low carbon fuels is a goal of the FFCEH initiative

Conclusions and Benefits of FFCEH to Northern Communities

- Positive preliminary technical and market analysis supports advancing the FFCEH to the TEA/FS stage
- Green H2 produced by FFCEH will establish Manitoba's leadership in the energy transition and will form the foundation for the establishment of new industrial development in northern Manitoba
- The FFCEH project is low risk large scale project incorporating established commercial technologies
- Advancing to a Techno-Economic Assessment / Feasibility Study is recommended to confirm positive preliminary findings on green hydrogen production. There is a strong investment case to support further investment and attracting investors and government support in largescale hydrogen investment opportunities.

- **✓** Positive Community Economic Impact
- **✓** Positive Environmental Impact
- **✓** Positive Transport and Marine Sector Impact
- **✓** Positive Industrial Sector Impact
- ✓ Positive Energy Reliability Impact
- ✓ Positive Regulatory and Incentive Impact
- **✓** Attract High-Tech and Innovation-Driven Industries
- ✓ Positive Provincial Image and Marketability Impact
- **✓** Positive Sovereignty Impact

Management and Directors

Aligned and Focused on Shareholder Returns

MANAGEMENT AND BOARD	EXPLORATION & DEVELOPMENT TEAM
Gorden Glenn - Chairman, President & CEO Over 30 years industry experience in finance as Investment Banking/Mining Analyst and including 9 years as a geologist.	GEOLOGY - Chris Buchanan, MSc., P. Geo Senior structural geologist with 20 years of experience specialized in structural controls and alteration assemblages of gold systems.
James D. A. White - <i>Director</i> Mr. White is the Managing Partner of Baynes & White, a Toronto-based pension and benefits actuarial consulting firm.	MINING & DEVELOPMENT – TBA
Brian Robertson - <i>P.Eng., Director</i> Over 30 years experience in corporate management, exploration programs, project management, mine permitting, construction, development and operation as well as the evaluations or corporate	MINNOVA RENEWABLE ENERGY – TBA FLIN FLON CLEAN ENERGY HUB – TBA
acquisitions.	
Chris Irwin - LL.M., Interim CFO, Director	Advisory Board
Mr. Irwin is President of Irwin Professional Corporation, a corporation providing legal services mainly to the natural resource sector.	Kent Newman - Advisory Board Mr. Newman has over 30 years experience in utility scale power including over 20 years at MB Hydro. Mr. Newman is currently President of AMPS Powerline.

Exploration, Development, Operations, Finance and Investment Experience

Capital Structure

MINNOVA

(Share data as of March 1, 2024)

Symbol	TSXV: MCI AGRDF: OTC Pink
Shares Outstanding	70,020,176
Options average price \$0.18	4,300,000
DSU/RSU average price \$0.85 Warrants \$0.29	975,000 6,030,000
Fully Diluted	81,325,176
Market Capitalization (recent price C\$0.04/sh)	~\$3 million
Cash and Equivalents	<\$100,000
Debt	~\$1,200,000
Management and Director Ownership	~15% basic ~20% fully diluted

Well Structured, Significant Insider Ownership

Gold Sector Valuation Significant Discount to Peers

Metric	MCI	Peers
EV/RSC OZ	~\$5	\$40
P/FS NPV @US\$1250 Au	<0.3x	>0.3x
P/FS NPV @US\$2,000 Au	<<0.05x	~0.1-0.6x

Green H2 Valuation
Too Soon to Tell

Contact Us

Gorden Glenn,
Chairman, President & CEO

Tel: +1 647 985 2785
gglenn@minnovacorp.ca
gglenn@minnovarenewables.com

217 Queen Street W., Suite 401, Toronto, Ontario M5V 0R2

www.minnovacorp.ca

